Observation of $\pi\pi$ Scattering in $K_L \rightarrow 3\pi^0$ Decays by KTeV

Ed Blucher University of Chicago

- Motivation to study $K_L \rightarrow \pi^0 \pi^0 \pi^0$ Dalitz Plot
- Overview of Analysis
- Results
- Summary

KTeV: Arizona, Chicago, Colorado, Elmhurst, Fermilab, Osaka, Rice, Sao Paolo, UCLA, Virginia, Wisconsin

Before 2004:

"Measurement of the quadratic slope parameter in the $K_L \rightarrow 3\pi^0$ decay Dalitz plot"

- S. Somalwar et al. (E731), PRL **68**, 2580 (1992)
- A. Lai et al. (NA48), PL **B515**, 261 (2001)

Density on Dalitz plot:

$$\left| M_{000} \right|^2 \propto 1 + h_{000} R_D^2$$

where R_D is the distance from the center of the Dalitz plot.

(Term with linear dependence on R_D is zero because of identical particles in final state.)

NA48/2 observed "cusp" in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ decays collected during 2003

2004: Cabibbo pointed out that the $\pi^0\pi^0$ mass spectrum in $K^\pm \to \pi^\pm \pi^0\pi^0$ could be used to measure the difference in $\pi\pi$ scattering lengths between I=0 and I=2 states, a_0 - a_2 – can be precisely calculated in chiral perturbation theory.

Rescattering process: $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ $\pi^{+} \qquad \pi^{0} \qquad q_{2}$ $\pi^{-} \qquad \pi^{0} \qquad q_{1}$

The same rescattering affects dynamics of $K_L \rightarrow \pi^0 \pi^0 \pi^0$ decays, but effect is expected to be much smaller.

$K_L \rightarrow 3\pi^0$ Dalitz plot will show effect of two contributions:

Intrinsic $K_L \rightarrow 3\pi^0$ dynamics

$$\left| M_{000} \right|^2 \propto 1 + h_{000} R_D^2 \quad (R_D^2 = X_D^2 + Y_D^2)$$

 $(PDG: h_{000} = -0.005)$

Rescattering

$$K_L \longrightarrow \pi^+\pi^-\pi^0 \longrightarrow \pi^0\pi^0\pi^0$$

(shown with $h_{000}=0$)

Previous results on h_{000} (E731 & NA48) ignored rescattering; KTeV presents first measurement of h_{000} that accounts for rescattering.

Data sample: 68 million $K_L \rightarrow \pi^0 \pi^0 \pi^0$ decays collected for acceptance studies as part of KTeV ϵ' analysis.

RING VETOS

REGENERATOR (E832)

MASK-ANTI (E832)

This analysis takes advantage of years of work to calibrate CsI calorimeter for ϵ'/ϵ analysis ($\sigma_E/E < 1\%$)

Event Reconstruction

- $K_L \rightarrow \pi^0 \pi^0 \pi^0$ reconstruction identical to $K_L \rightarrow \pi^0 \pi^0$
- To improve resolution in Dalitz plot variables, we fit 6 $E_{\gamma}s$ in each event using m_{K} and m_{π} constraints:

$$\sigma(R_D^2) = 0.070 \rightarrow 0.014$$

$K_L \rightarrow \pi^0 \pi^0 \pi^0$ Data – Monte Carlo Comparisons

Raw Dalitz plot: 68 million events

10% variation is mostly from acceptance effects; physics effects give \sim 1% variations,

Dalitz Plot Projections

Dalitz Plot Projections

no obvious cusp effect as in K[±]

Cusp in $K_L \rightarrow \pi^0 \pi^0 \pi^0$

Raw Dalitz Density

MC Phase Space

Visible cusp

- We fit our data using model of Cabibbo and Isidori: JHEP 503, 21 (2005) includes all one and two loop rescattering processes.
- h_{000} and a_0 – a_2 are two free parameters for $K_L \rightarrow \pi^0 \pi^0 \pi^0$

We perform two fits:

- 1. Fixing a_0 - a_2 to the NA48 value: $m_{\pi^+}(a_0 a_2) = 0.268 \pm 0.017$
- 2. Floating both h_{000} and a_0 – a_2

Good agreement with model except for $m_{\pi^0\pi^0}$ < 0.274 GeV/c^2

Good agreement with model except for $m_{\pi^0\pi^0}$ < 0.274 GeV/c^2

This region is excluded for central values of fits, but is included in systematic error.

Fit Results

1. Using NA48 result $m_{\pi^{+}}(a_0 - a_2) = 0.268 \pm 0.017$,

$$h_{000} = (+0.59 \pm 0.20_{stat} \pm 0.48_{syst} \pm 1.06_{ext}) \times 10^{-3} = (+0.59 \pm 1.19) \times 10^{-3}$$

$$\chi^2 / dof = 2805.3 / 2765$$
 (all pixels)

$$\chi^2 / dof = 125.3 / 130$$
 (edge pixels)

2. Floating both h_{000} and a_0 – a_2 :

$$h_{000} = (-2.09 \pm 0.62_{stat} \pm 0.72_{syst} \pm 0.28_{ext}) \times 10^{-3} = (-2.09 \pm 0.99) \times 10^{-3}$$

$$m_{\pi^{+}}(a_{0} - a_{2}) = 0.215 \pm 0.014_{stat} \pm 0.025_{syst} \pm 0.006_{ext} = 0.215 \pm 0.031$$

$$\chi^{2} / dof = 2790.6 / 2764 \text{ (all pixels)}$$

$$\chi^{2} / dof = 126.3 / 130 \text{ (edge pixels)}$$

ChPT (Colangelo et al.): $m_{\pi^{+}}(a_0 - a_2) = 0.265 \pm 0.004$

Comparison with Other Results

Summary

- •Rescattering effect observed in $K_L \rightarrow 3\pi^0$
- •Data well described by model of Cabbibo and Isidori, except for $m_{\pi\pi} < 0.274~GeV/c^2$
- •Measured a_0 – a_2 consistent with but less precise than NA48 measurement in $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$ decays (isospin decomposition favors K^{\pm} over K^0)
- •After including rescattering effect, no evidence for nonzero \mathbf{h}_{000}

Results published in E. Abouzaid et al. [KTeV Collaboration], Phys. Rev. D 78, 032009 (2008).